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SWNT ARE A CLASS OF MOLECULES Z% RICE
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Chirality (n,m) identifies
the species

(n,0) and (0,m): zig-zag
(n,n): armchair
(n,m): chiral
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*Metallic: n = m (bandgap = 0 eV)
«Semi-metallic: n — m is multiple
of 3 (“mod 3 tubes,” bandgap ~1-
10 meV)

eSemiconducting: n —m is not a

e e multiple of 3 (bandgap ~0.5- 1.0
10,10) nanotube eV, HiPco 0.8-1.4 eV)

# Current methods produce mixtures of metallic/semi-metallic
(1/3') and semiconductors (2/3")
# Different diameters, polydisperse length
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CURRENT TYPE SEPARATION METHODS %;S RICE
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# Covalent functionalization — Strano et al., Science 2003

# Selective adsorption — Chattopadhryay et al., JACS 2003

# lon exchange chromatography — Zheng et al., Science 2003

# Selective elimination by electrical breakdown — Collins et al., Science 2001
# Density gradient ultracentifugation —Arnold et al., Nature Nanotech. 2006
# Electrophoresis — Heller et al., JACS 2004

# Dielectrophoresis — Krupke et al., Science 2003

So far, all methods yield small quantities of SWNTs (mg)
Some may be scalable: modeling can help scale-up
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WHAT IS DIELECTROPHORESIS (DEP) 5@ RICE
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# Motion of particles caused
by polarization effects in a
Nonuniform Electric Field

NORMAL DIPOLE

# The direction of motion is
Independent of the field

. . OUTER ELECTRODE L
direction N Ac or DG
# For the same field, metallic FOEP=|,.VE
particles have an higher /
dipole moment than uoc E FDEP o VE2

semiconducting ones
Ref: Pohl, J.A.P. 1958



PREVIOUS DEP SEPARATION %;g RICE
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# Ralph Krupke et al. Science 2003 — First work on metallic vs.
semiconductors DEP separation with a drop of solution placed on an
interdigitated electrode array

# Kim et al. J. Phys. Chem. B, 2006 (Strano) — Used the same method as
Krupke but with mixtures of anionic and cationic surfactants (main results
are shown later)

# Haiging Peng et al. JACS, 2006 (@ Rice) — Extended Krupke’s method for
higher throughput using DEP-Field Flow Fractionation (DEP-FFF):
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COAXIAL CHANNEL GEOMETRY 2 RICE
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Spatial Scaling of

# Advantages of Coaxial Geometry: Electric Forces:

# FPEP scales with 1/r like in interdigitated
electrodes; no regions with FPEP=0

DEP 2 2/¢3
# Analytical expression for flow and DEP F EO< VE? oc VIt
fields and forces F=oc E o< Vil

# No need for microfabrication

# A small Electrophoretic force FE prevents the Semiconducting SWNTs from
diffusing to the outer radius R,, making them remain in solution



SWNTs EQUATIONS MOTION RICE
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0 = FT + FHydro 4+ FBrown FT=FDEP+FE ___ , Same for Torques

# Inertia neglected: small SWNT mass; acceleration time scale (ps) << viscous scale

# Brownian forces are important: stochastic differential Eq. — Brownian Dynamics
Algorithm with Forward Euler scheme to integrate eqgs. of motion

# Optimal Parameters for Cylinders radius, Voltage and Flow determined

D .

KBTNIT xu(t)At + At(k-u —u(uu : k

A !
D.F At + bt
rorl Frtviat+ b

< b(t)b(t) >= 2D At

R(t + At) — R(t) =

Ref. Hartmut Lowen, Phys. Rev. E, 1994



CLAUSIUS-MOSSOTTI FACTOR %\'

< ME >= VyrenRe [I{/ / KL] (Lt — L/VE2y6(u-1)(u x 1)

VT

DEP __ 2 ¢* — Dielectric
F o emfte [K] VE Constant
e — Permittivity
* ={<
KL, | ENT — €m c — Conductivity
+ (e — €F )Ll |
€m NT m f - Frequency

# SWNTs modeled as prolate ellipsoids to compute depolarization factors L

#

several orders of magnitude

For frequencies f ~ MHz, K,, remains constant (K,,/~10%); Ks can change

# Separation efficiency is chiefly controlled by the Polarization ratio set by

selecting f in the MHz range:

Ref: Ralph Krupke et al. Nano Lett., 2004

P(f) = RelK,,]/Re[Kg]
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ROTATIONAL PHASE DIAGRAM %§* RICE
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0 = FDEP 4+ FHydro 4 FBrown 0 = MPEP 4+ NMHydro 4 |\/Brown

a ol

The two shaded areas
are the preferential
regimes for separation:

# SB — Only Metals align
with field

# SH — Semiconductors

Brownian I align with flow and

Metals with field

Pe



ROTATIONAL PHASE DIAGRAM %§ RICE
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0= |:DEP + |:Hydro + |:Brown 0= MDEP + MHydro + MBrown
DEP
Uz (M) - Ry _ 103
A | Ip
KT
Uy (S)=K.T KpT
| SRR TPFPP(Ry — Ry)
TBM(R2 — Rl) .
‘ Pe(Ry) = E) 7 = 0.01
MPEP(R.
My () ey g

M Hydro (R 2)



LENGTH DISTRIBUTION
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_ _ _ Wit Pe400nm [ __ 6
# Fixed uniform radius r;=0.5 nm 0.006 e a= 6x10
0.005 | } < b=2.3
# | ;= random number following a 0.004 | ‘ | .~=250 nm
Weibull (W) distribution |6=78.2nm
0.003 |
istributi 0.002 | , ;
# The parameters for t.he distribution W(1) = ab(l — lmn)"—1&*““*‘%) ]
were chosen so that: 0,001 | |
DEP (3 <] 4254 2.7 ‘ : ‘ \‘ It Inm(
UR ™" (M, R, limin) - (h- >+ r-’f) <10 250 325 400 500 600 700 800
KpT brin Ref: Shiren Wang et al. Nanotechnology, 2003
100000,
# Represent length distribution of HiPco 1000 | - pDEP - |
SWNTSs subjected to a length sorting —CFps  Slpem 2T
technique: Becker et al.(NIST) Adv. 10 | . '
Mater. 2007 : - sl VA
0.1k 100
# In the regime where DEP and Hydro l |
dominate the SWNT alignment is gy Pe(Ry) - Slope = 2.64
practically length independent 0.00001 | UREP(M,Ro) S
/ KT o
l.xM-
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MOTION OF SWNTs IN DEVICE: DEP + EP Z§ RICE
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Separation trailer
with 6 metals (red) and 6 semiconductors (green)

Side boxes show the orientation of one of the SWNTSs
Sys=10 , Fixed length [ +=400 nm




DEVICE PERFORMANCE (P): DEP + EP @' BJQE

# Independent of initial fraction of injected P Njf/‘}l' Ngoz-

semiconductors versus injected metals B N;'\j[’ff Ngnj-
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Best Length L=54.2R,,



EFFECT OF ENSEMBLE SIZE: DEP + EP

# Results with best Channel Length L=54.2R,
# The small error values shown for Metals and
Semiconductors w/ S,,c=10 in both plots indicate that

the number of particles used is high enough

Histogram of Collected SWNTS
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PHASE DIAGRAM AND OPTIMIZATION RICE
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0 = FDEP 4+ FHydro 4 FBrown 0 = MPEP 4+ NMHydro 4 |\/Brown

Optimal conditions
obtained w/ a Nelder
and Mead

direct search
algorithm.

This iteratively
searches for the
maximum in
separation
performance as a
function of the
device parameters




PHASE DIAGRAM AND OPTIMIZATION
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0 = FDEP 4+ FHydro 4 FBrown

0 = MPEP 4+ NMHydro 4 |\/jBrown

Pe

Dimensionless quantity | Optimized value
% 587.5
UEEP(M,Ry) _
TPEP(Ry—Ry) 19w 103
TEN(R,= Ry ) 9.42 x 10
p(’[ﬁl] 18.13
Fio" (Ry)
}%’E{sz 10.9
L/R; 476
Performance 0.991
A[DEP(RQ) .
A[H ydr O(Rz)
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THE DEP SEPARATION DEVICE
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MEASURING TYPE ENRICHMENT

Diameter of tube (nm)
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Ref. H. Kataura et al. Synthetic Metals, 1999

2.41 <<= A=514.5nm

-1.96 <<= =633 nm

L]
180

I
200

1
220

I
240

Raman Shift (ecm-1)

1.58 <¢mmmmm  )-795 nm

Example with 633 laser:

» The peaks relative intensity
show that mostly Metallic tubes
were collected at different spots
along the wire

# Liquid Phase Raman is currently the
most accurate method for measuring
separation. Solid phase can be
troublesome



OUTPUT SOLUTION ANALYSIS

aks

-

#

Normalized Int. to (10,3) peak

Simple test with a single flow using a 1%

Pluronic (F108) decant

F=42 MHz

1.0 4

(10,3)

0.8 -

0.6 1

0.4 -

0.2 4

0.0

*
#
L
:
RBM with 633 nm Laser
Metals
5) Semiconductors

—— Qutput Sol. (61 mg/L)
—— Ref. 1% Plur. (106 mg/L)
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Initial sol. Conc.= 106 mg/L
Eluate conc.= 61 mg/L

Eluate mostly has semiconductors
~ 40% SWNTs collected on wire

The Output Sol. spectra was multiplied
by the concentration factor

between reference and solution (x1.74)
| There is depletion of higher diameter

| semiconductors (more metallic)

—— L660Sol

—— L785S0l
Ref660

— Ref785

900 1200

Wav (nm)

1300 1400 1500



L OOKING AT THE WIRE %g RICE
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# The wire gets covered with a foam of SWNTs + surfactant with a density
of ~ 20 mg/cm?

# The Fano peak relative
iIncrease in 514 Raman
Indicates metallic

enrichment
Laser = 514 nm
2 0.8 —— Wir m
? \I’?vef:rgﬁceple
™
: |
3 Fano Peak
% 0.4 - \>//J
N ||
£ b ||
= A jﬂj \\
0.0 s JJL“‘““"““__TMM - \\!\
' ' 700 ) 1400 '

Raman Shift (cm-1) SEM by Laura McJilton



LOOKING AT THE WIRE

109 RBM with 633 nm Laser in Wire

— Spot 1
Spot 2
Spot 3
Ref (Liq)

Metals
Semiconductors

L] ] 1
250 300
Raman Shift (cm-1)

» Total Length =50 mm
» Diameter = 0.254 mm

# Metallic enrichment can
be measured by the
relative intensities of the
(13,4) and (10,3) peaks in
633 Raman

# Spot 1 is at the injection,
so it collected a big
agglomerate of all kinds of
SWNTSs (taken as
reference)

# Spots 2 and 3 along the
wire are metallic enriched



OUTPUT AND WIRE TESTS

# Single solution flow (1% Pluronic) using smaller
cylinder and wire dimensions. Significant enrichment
measured with 514 laser

# F = 45 MHz — Both SWNT types appear to exhibit
positive DEP

—— Output Sol.—

|

(8,5)

Semiconductors

1.0 5
(12,2) )\
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Raman w/ 514 nm Laser
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Raman w/ 633 nm

Raman w/ 633 laser
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STUDYING THE EFFECT OF SURFACTANT %§ RICE
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_ Re[K}]
# The SWNT effective  Max®e[K'y) e N B
COI’]dUCtIVIty (Geff) - RB[K”] conductivity (0
as Seen by the MM(RQ[KHSD e - . . Decrease in semiconductor
medlum = |S the l ﬂ \ : |- etfective conductivity (og)
main physical \i
property that _\i .
enables type o | |
. Re[(K's(f™5)] | | !
separation ) |
o v
# This quantity is A\
composed of two Min Re[Ks]) i ————— Logy({)
components: Log 5(f“s) Log j(f")

o = F (Surface o, Intrinsic o)

» It should be possible to tune o by
changing the surfactant layer conductivity

Surface ©

Intrinsic ©



COMPARISON WITH STRANO et al. WORK %ﬁu RICE
USING A CTAB+SDS EQUIMOLAR MIXTURE > UNIVERSITY

Results from Strano paper for Metallic
2800 Output Semics. SWNTs deposited on the electrodes
2600 ] |—— Ref. CTAB + SDS sol.

2400
2200 4
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500 -
4DCI—-
200 -

]

®) a0 DEP sample

(2.3

Intensity (3.0.)

Raman @ 633 nm

Raman shift (cm”)

(@) (134 DEP sample
¢ (123

- Metallic -

Intensity (a_u.)
E N
Y
L
o
p T

' T ¥ T L Y |
150 200 250 300 350
Raman Shift (cm-1)

o
[ Sl YL T T T T

) 0 15

# Total Metallic depletion was achieved by using a ol
combination of 2 surfactants: SDS(-) in CTAB(+) SWNT
solution with equimolar ratio (1:1)

# SWNTs flocculated due to heating

Raman shift (cm”)

(d) Smaller number of electrodes

Ref: Kim et al. J. Phys. Chem. B, 2006



CONCLUSIONS > RICE
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# Model is in dimensionless variables; can be converted into dimensional
parameters once the properties of liquid, surfactant, and SWNTs (metallic &
semiconducting) are determined

# A 99.1% sorting performance can be achieved at optimal conditions if:

# No short tubes (below ~250 nm) are present and the length distribution is
narrow (standard deviation ~ 78 nm). This can be obtained using length
sorted or carpet grown SWNTSs.

# The polarization ratio P(f) is 10 or higher (at least one order of magnitude
difference between the DEP force on metals and the one on
semiconductors)

# Experimental tests show good separation at a frequency of 45 MHz either by:

# Using a non-ionic surfactant (Pluoronic F108)

# Or an equimolar mixture of a Cationic and Anionic surfactant
(CTAB:SDS)

# Once optimal surfactant is determined, we will adapt the device to operate at the
simulation conditions to approach the predicted optimal performance

# Performing sequential runs with solutions of just semiconductors may yield specific
(n,m) chirality enrichment
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SWNT STRUCTURE AND TYPES %i} RICE

# Metallic tubes have n-m=3i, i=integer

# As produced HipCo SWNTs exhibit > 50 (n,m) chiralities

# Equidistribution of Chiralities: 1/3 are metallic tubes and 2/3
are semiconductors

Ref: Bachilo et al. Science, 2002



DIELECTROPHORESIS SO FAR AT RICE RICE
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e Bottom of the chamber
filled with a Au gold

array Of 2X50“m SCIDD:; A {wmﬁ {7,6}':7 5) gmﬁ irferg;rodes
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_ 4000 J 2\
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« Raman spectra - 2000
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Wavelength (nm) Ref: Haiging Peng et al. JACS, 2006



CLAUSIUS-MOSSOTTI FACTOR RICE

# Known Values: v
N
# £5= 52, FPEP = N ¢ Re[K|VE?
# g, = 10%¢, 2
#Sm:8080 A,J_//: FRTT_F:TL 6 —G—Zi
# —om=103S/m evr + (e — e ) LY/ 2nf
# Estimated values: MaxRe[K/A,) [ RelK]
# f°=1Mhz : 6s= 102 S/m “ | Re[K's]
f~ Re[KM] MaX(Re[Km]) MaxReRSsD p == _l- ﬂ__‘\ —> Increase in 6,
om=10°>S/m \ 5 = Decrease in Gy
\s
i . Re[K/s(f%)] l‘
# Results will only be function =
of the separation ratio set by g\\ .
changing f around f.¢ ReK/]) N Log,
g g > i) Log,,(f%) Log;o(f%) %)
Re [K J/\/_{] Effect of Surfactants on SWNTs K factor

SMS = R
S Ref: Ralph Krupke et al. Nano Lett., 2004




MIXTURES OF ANIONIC (-) AND CATIONIC (+) B
SURFACTANTS @ RICE
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# Objective: Reduce the SWNT Surface o to achieve better separation performance at
the MHz range

# Anionic and Cationic mixtures don’t have good stability when heated up to 80-100 °C

Decant : Added Sol.
——0.25% CTAB : 0.75% SDS (1:3)

# Different mixtures were 4,
tried with several volume

1.0 -

-0.75% SDBS : 0.25% CTAB | (3:1)
ratios using: —_— — 0.15% NaCh : 0.85% CTAB (1:5.7)
» NaCh (-) -
» CTAB (+) 8 Mixt. Fluor. Decant Conc.
» SDBS (-) > Mixt. Conc. oY ax Decant Fluor.
» SDS (-) Wi

&5;
# The combinations that & 0.4-
showed best stability 0.3 4
under heating are 0.2

displayed on the graph

Fluorescence (660 nm)

0.1 4

0.0

! T ! I y I T I ' T
900 1000 1100 1200 1300 1400
Wav (nm)



